Unit 6

Energy Resources and Consumption

What is energy? Review from previous classes

Energy- The capacity to do work

Types of energy

- Potential- energy at rest
- Kinetic- energy in motion
- Radiant- energy from sunlight

Energy Units

Joule (J)
Calorie (cal)
British thermal unit (BTU)
Kilowatt hour (kWh)

Power Units

- Watt (W)Horsepower (hp)

 \ast Do you remember the First & Second Laws of Thermodynamics

Renewable & Nonrenewable Resources

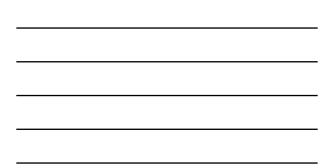
Definitions

Renewable Energy Sources

 Energy sources that can be replenished naturally, at or near the rate of consumption, and reused

-Nondepletable

Nonrenewable Energy Sources

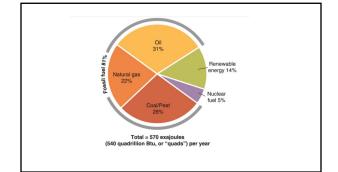

 Energy sources that exist in a fixed amount and incolce energy transformation that cannot be easily replaced.

Examples

Renewable Energy Sources

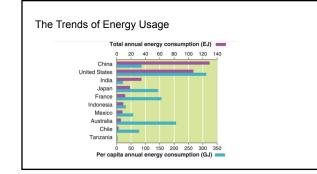
Nonrenewable Energy Sources

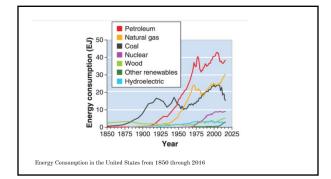
Global Energy Consumption

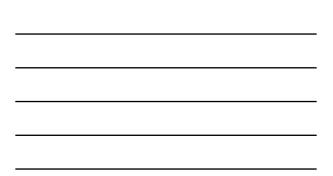

Fossil Fuels

What is the most widely used source of energy?

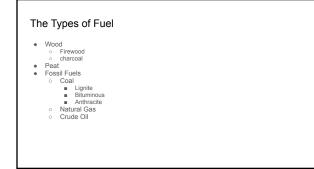
Crude OilNatural Gas

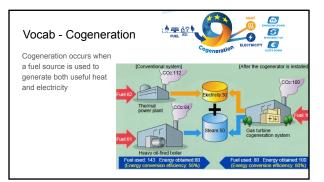

- Coal

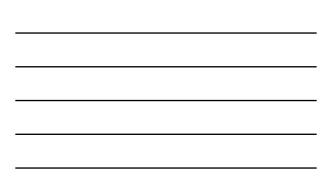

*fossil fuels are formed from the fossilized, buried remains of plants and animals that lived millions of years ago.



Key Points of Global Energy Consumption


- Energy resources are not evenly distributed between developed and developing countries
- There is a pattern to energy use as a developing country becomes more developed
- As the world become more industrialized, the demand for energy increases
- Availability, price and governmental regulations influence which energy sources people use and how they use them





Fuel Types and Uses

PEAT

- Definition- Partially decomposed organic materia that can be burned.
- From the dictionary -a brown deposit resembling soil, formed by the partial decomposition of vegetable matter in the wet acidic conditions of bogs and fens, and often cut out and dried for use as fuel and in gardening. •
- Rarely used outside of Northern Europe • The bogs of Ireland
- Releases more carbon dioxide than natural gas and coal.

COAL

Three Types of Coal

- LigniteBituminousAnthracite
- Heat, Pressure and Depth are the factors that

make up the different types.

Positives

- Energy dense & Abundant
 Easy & Safe to transport
 The Economic Backbone of some small towns
 No refining necessary
- Negatives
- Only have about 200 years of coal left
- Mining practices Contributes to acid rain . .
- •
- Highest emitter of CO₂ Sulfur & trace amounts of toxic metals (mercury)

NATURAL GAS

Positive

Cleanest of the Fossil Fuels
Cogeneration power plants can have efficiencies up to 60%
Fewer impurities than coal or oil

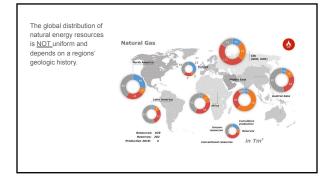
Negative

Risks of leaks/explosions, pipelinesReleases methane, hydrocarbons,

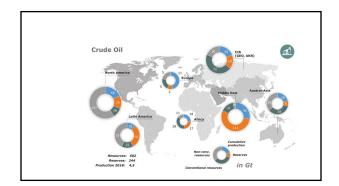
hydrogen sulfide • 25x more effective as greenhouse gases than CO₂

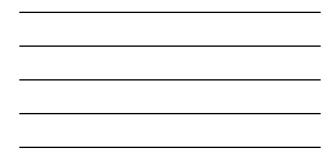
OIL

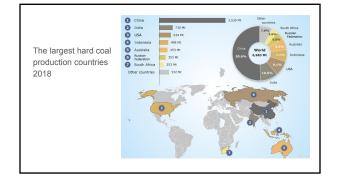
Can be recovered from tar sands *Tar Sands are a combination of clay, sand, water, and bitumen

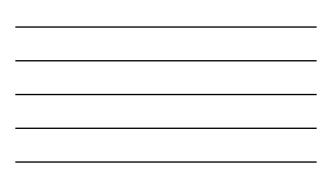

Positives

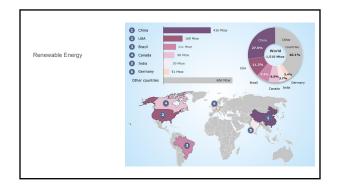

- Cleaner burning than coal
- Ideal for mobile combustionQuick ignition

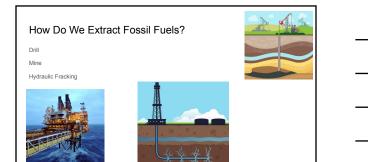

Negatives


- Oil spills
 Significant refining required
 Will be less available in the next 40ish
- Will be less available in the next room years
 Second highest emitter of CO₂
 Earth Moving Equipment (bad for the environment & human safety)


Distribution of Natural Energy Resources






Fossil Fuels

How Do Fossil Fuels Generate Power?

- Combustion
 - Chemical reaction between the fuel Onemical reaction between the la and oxygen
 Yields carbon dioxide and water,
 - released energy
- Burning

 - Generate heat
 Can heat water to create steam to turn a turbine, that make electricity

How Do Fossil Fuels affect the Environment?

- Global warming Emissions
- Air Pollutants
- Water use
- Coal Waste

Nuclear Power

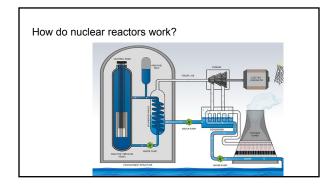
What is Nuclear Power?

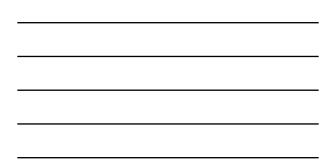
It's all about Fission.

- Neutron Uranium 238
- Nuclear power is power that is generated through the fission of Uranium-235.
 Nuclear fission releases large amounts of
 - Nuclear fission releases large amounts of heat. • The heat can be used to generate steam which powers a turbine and generates electricity.
 - Is a nonrenewable energy source
- High energy density

•

 Considered cleaner because it does not produce air pollutants.....but what does it create.....


Nuclear Power's impact on the environment


- Thermal Pollution
- Hazardous Solid Waste
 Uranium-235 is radioactive
- Nuclear Meltdown/ Explosion
- Nuclear Weapons -"Dirty Bomb"
- IrritationDamageDeath

Short term Effects

- Long Term Effects
- Damage to DNA
 Damage to the eyes, brain, immune & reproductive systems.
 Radioactive waste is dangerous for
 - Radioactive waste is dangerous for hundreds of thousands of years

Energy from Biomass

What is Biomass? How do we use it?

Biomass- any plant or animal material used as fuel "includes ethanol & biodiesel Low Cost

Biomass' impact on the Environment

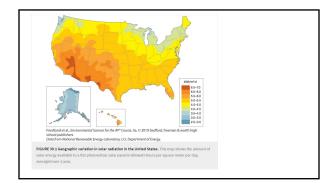
Overharvesting of Trees ---> Deforestation

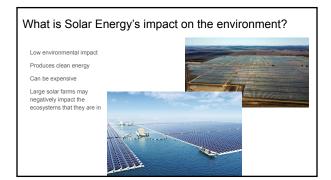
- Produces

 - Carbon Dioxide
 Carbon Monoxide
 Nitrogen oxides
 Particulates
 Volatile Organic Compounds

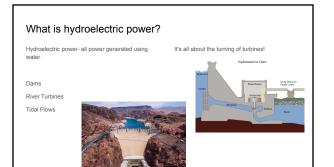
Modern Carbon Vs. Fossil Carbon

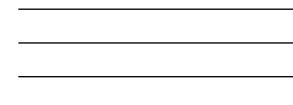
Solar Energy


What is Solar Energy?


Energy of the Sun

- Active Solar Energy Systems
 Storage Capable
 Photovoltais solar cells capture light
 energy from the sun and transform it
 directly into electrical energy.
 Solar water heater
- Passive Solar Energy Systems
 Cannot be collected or stored
 Window position in houses
 Dark colored roofs
 Building homes into a hill
 Solar ovens

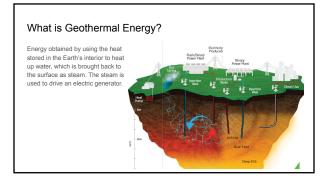




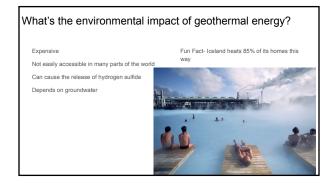
Hydroelectric Power

What are the hydroelectric energy impacts?

- Does not produce air pollution or waste once built
 Cement production is responsible for 5% of global anthropogenic CO₂ emissions
 Construction is expensive
 Habitat loss or change
 - Creates recreationFlood controlFish ladders


Positives


.


Water flow changes (heat retention and life cycle problem -

Geothermal Energy

Hydrogen Fuel Cell

What are Hydrogen Fuel Cells? Fuel Cell- an electrical-chemical device that converts fuel into an electrical current. An alternative to non-renewable fuel Use Hydrogen as a fuel source by combining it with the oxygen in the air to from water and release energy (Electricity) Water is the product (emission)

What are the environmental impacts of hydrogen fuel?

Low environmental impact

No carbon dioxide emissions

The technology is super expensive

Electricity can be produced at any time Other energy is still needed to create the hydrogen gas

Wind Energy

What is wind energy?

The Kinetic energy of moving air (wind) is used to spin a turbine

The turbines convert the mechanical energy into electricity

Energy Conservation

What is Energy Conservation?

Definition- finding and implementing ways to use less energy

Energy Efficiency is part of Conservation

I recycle, isnt that enough?

Methods of Energy Conservation

In Your Home

- Adjusting the thermostat
 Conserving water (shorter showers, turning the sink off while you brush your teeth, low flow toilets, ect.)
 Use of energy-efficient appliances
 Conservation landscaping
 Conservation

- CarpoolDo laundr
- Do laundry in cold water
- :
- Improving fuel economy for vehicles
 Using BEVs (battery electric vehicles)
 Hybrid vehicles
 Using public transportation
 Implementing green building design
 features

Large Scale

- Weatherize, inulate, seal gaps Unplug/ Use a powerstrip